Entrance and exit at infinity
for stable jump diffusions

Andreas Kyprianou (based on joint work with Leif Doring)
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» Feller’s definitions and proofs are purely analytic, using Hille-Yosida theory to
generate Feller semigroup of a process (X;,t > 0) from differential operators
(diffusion generators)

o(x)? d?

2 dx?
taking account of the different boundary conditions.

d
A= —
K(x) T +
> A change of space via the so-called scale function (say s which makes
(s(Xt),t > 0) a martingale)
dZt = &(Zt) dBt, ZO =zc R,
on a new interval (&, b).
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THE CASE OF AN INFINITE BOUNDARY

> In the setting of the entire real line, i.e. # = —oo and b = +o0, the notion of
entrance (in applications also called coming down from infinity) and exit
(explosion) becomes interesting

» Depending on the growth of ¢ at infinity the infinite boundary points can be of an
entrance type. Feller’s results for this scenario imply that +oo is an entrance
boundary if and only if

—+o00o
/ xo(x) "2 dx < oo,

i.e. o growth slightly more than linearly at infinity.
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» The notion of coming down from infinity becoming more important in other
classes of Feller processes e.g. Kingman’s Coalescent
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» The notion of coming down from infinity becoming more important in other
classes of Feller processes e.g. Kingman’s Coalescent

aﬂiﬂjﬂj?llff% i

> The death chain counting number of blocks (genealogies) in Kingman'’s
Coalescence is monotone and skip free (relatively easy to handle!)
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» Kingman coalescent dynamics, fragment each block at a constant rate into an
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the first fragmentation event?

> Nothing more than a Markov chain (N(t) : t > 0) on N U {oo} specified by the

Q-matrix ‘
) =it
Qz’]_{ i ifj = oo.
Let 6 :=2\/c.
» If0 < 0 <1, then (N(t) : t > 0) is a recurrent Feller process on N U {oco} such that

{00} is instantaneously regular (that is to say 0 is a not a holding point).
» If @ > 1, then {oo} is an absorbing state for (N(¢) : t > 0).
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COMING DOWN FROM INFINITY: III

» Lambert’s logistic Continuous-state branching process

dZ; = bZidt 4+ vZ4dB; — cZ2dt, t>0.

Lambert (2005)
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COMING DOWN FROM INFINITY: III

» Lambert’s logistic Continuous-state branching process

dZ; = bZidt 4+ vZ4dB; — cZ2dt, t>0.

Lambert (2005)
> More generally

¢ bz
Zy :x—u/ sts+a/ / W(ds, du)
Zo_
+/ / / ds,dz; dr) — / G(Zs)ds,

[Berestycki, Fitipaldi & Fontobona (2018)]
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STABLE JUMP-DIFFUSIONS

» Focus our study on so-called stable jump diffusions:
dZt:U(th)dX[, ZOZZER,tZO.

» Intersted in entrance from {+oo}, {—oco} and o0 := {400} U {—o0}
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STABLE PROCESS

» A stable process lies in the intersection of the class of Lévy process (stationary and
independent increments) and the class of self-similar Markov processes: for all
c>0andx € R,

(cX,—ay;, t > 0) under Py is equal in law to (X, t > 0) under Py,

where (Py, x € R) are the probabilities of X and « € (0, 2).
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STABLE PROCESS

» A stable process lies in the intersection of the class of Lévy process (stationary and
independent increments) and the class of self-similar Markov processes: for all
c>0andx € R,

(cX,—ay;, t > 0) under Py is equal in law to (X, t > 0) under Py,

where (Py, x € R) are the probabilities of X and « € (0, 2).

» Semigroup of X is entirely characterised by ¥(z) := — logEg [e?2X1]

, satisfying
U(z) = 2 (MG gy +e G gy ), zeR
where p = P(X; > 0).
» The Lévy measure associated with W:

E%Q:FO+®

sin(mwap) sin(rap) 1
E— Tso) + (1 + a)f Wl(x<0)7

x1+a

where p := 1 — p. In the case that « = 1, we take p = 1/2, meaning that X
corresponds to the Cauchy process.
Convention from now on: Anything with a " is associated to the law of —X. E.g.
P, is the law of —X with Xy = —x.
» If X has only upwards (resp. downwards) jumps we say X is spectrally positive
(resp. negative). If X has jumps in both directions we say X is two-sided. A
spectrally positive (resp. negative) stable process with a < 1 is necessarily
increasing (resp. decreasing). 8/23



SDE

Proposition (Zanzotto (2002), Déring & K. (2018))

Suppose that o is strictly positive. Then there is a unique (possibly exploding) weak
solution Z to the SDE

dZtZO'(Zt_)dXt, Zo=z€R,t>0.
and Z can be expressed as time-change under P via

Zi = Xg, t<T,

S
7 = inf {s >0: / o(Xs)~%ds > t}
0

and the finite or infinite explosion time is T = [ o'(X;s) ~*ds.

where

The law of the unique solution Z will be denoted by P>, z € R.

9/23



SDE

Proposition (Zanzotto (2002), Déring & K. (2018))

Suppose that o is strictly positive. Then there is a unique (possibly exploding) weak
solution Z to the SDE

dZtZO'(Zt_)dXt, Zo=z€R,t>0.
and Z can be expressed as time-change under P via

Zi = Xg, t<T,

S
7 = inf {s >0: / o(Xs)~%ds > t}
0

and the finite or infinite explosion time is T = [ o'(X;s) ~*ds.

where

The law of the unique solution Z will be denoted by P>, z € R.

Technical point: when a € (1,2), the origin is a recurrent point, hence as o > 0,
T = oo.

9/23



SDE

Proposition (Zanzotto (2002), Déring & K. (2018))

Suppose that o is strictly positive. Then there is a unique (possibly exploding) weak
solution Z to the SDE

dZtZO'(Zt_)dXt, Zo=z€R,t>0.
and Z can be expressed as time-change under P via

Zi = Xg, t<T,

S
7 = inf {S >0: / o(Xs)~%ds > t}
0

and the finite or infinite explosion time is T = [ o'(X;s) ~*ds.

where

The law of the unique solution Z will be denoted by P>, z € R.

Technical point: when a € (1,2), the origin is a recurrent point, hence as o > 0,

T = oo.

However, when « € (1,2), k := inf{t > 0 : Z; = 0} is almost surely finite (irrespective
of Z(]).
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ENTRANCE AT INFINITY

Definition
We say that o0 is a (continuous) entrance point for a Feller process Y on R with
transition semigroup P (with probabilities Py, x € R) if

(i) the point o0 is not accessible,
(ii) the semigroup P can be extended to a Feller semigroup P on Cy(R),

(ii1) there is continuous entrance in the sense that
Pioo | lim|Y¢| = oo,limsup Y; = +oo,liminfY; = —oo | =1
t10 £10 tL0

Analogously, we define entrance from —oo as extension to C,(R) and entrance from

+00 as extension to C(R) = C(R).
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ENTRANCE AT INFINITY

Theorem (Doring & K. (2018))

Suppose that o is uniformly bounded away from the origin and let

IJ’Q(A):Aa(x)_a|x|a_1 dx and 77 :/Rcr(x)_llog\x|dx.

Then the following table exhaustively summarizes entrance points at infinity of

dZ; = o(Z;_) dX;,

Zo=z€R,t>0.

Necessary and sufficient conditions for entrance from infinite boundary points

[ o [ jumps [[ Foo [[ = [[ £c0
only | X X X
<1 only 1 X X X
T &1 X X X
[=1]1&l ] x [ x [ vigrr! < o
only | X ViffIT Y (R_) < oo X
>1 only 1 V17 (Ry) < oo X X
T &1 X X Viff 17 (R) < oo

[=2]

none

[ Vif172 @) <

[ Vi17Z@®_) <

x
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Suppose that o is uniformly bounded away from the origin and let

IU’a(A)ZAU(x)_ale_l dx and 19! :/]Ra(x)_1 log | x| dx.

Then the following table exhaustively summarizes entrance points at infinity of

dZt = U‘(Zt,) dXt,

Zo=z€R,t>0.

Necessary and sufficient conditions for entrance from infinite boundary points

[« Jumps [[ 4oo [ — [ £
only | X X X
<1 only X X X
T & | X X X
[=1 T 1&s [ x [ x [ vifiol < o
only | X ViffI9 % (R_) < oo X
>1 only VffIT ¥ (Ry) < oo X X
1T & ] X X Viff179°%(R) < oo

[=2]

none

[ viiimZ®,) <

[[ viiiim2®_) < o

[ x

Henceforth concentrate on the case of two-sided jumps.
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RIESZ-BOGDAN-ZAK TRANSFORM

Convention from now on: Anything with a " is associated to the law of —X. E.g. Py is
the law of —X with Xy = —x.
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RIESZ-BOGDAN-ZAK TRANSFORM

Convention from now on: Anything with a " is associated to the law of —X. E.g. Py is
the law of —X with Xy = —x.

Theorem (Bogdan & Zak (2010), K. (2016))

Suppose that X is a stable process with two-sided jumps. Define
S
n(t) =inf{s > 0: / X, 72%du > t}, t>0.
0

Then, for all x € R\{0},
1

>0
Xty

under Py a self-similar Markov process equal in law to (X, IP’f /X), where

dpe h(X¢)

=———1
dr, 5 h(x) (t<710})

h(z) = (sin(rap) + sin(rap) — (sin(map) — sin(rap))sgn(z)) |z|*
and F; :=0(Xs : s <t),t > 0.
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STABLE CONDITIONED TO AVOID THE ORIGIN

» Recalling that a € (1,2), |x|*~! as a Doob h-function, rewards paths that are far
from the origin (|x| > 1) and punishes paths that stray too close to the origin
(Jx] < 1).
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(x| < 1).

» In fact it has been shown [Chaumont, Panti & Rivero (2013), Kuznetsov, K., Pardo, Watson (2014)]
that (X, P‘y’ ), y # 0, can be identified by the limit

01 AN — 1s
Pj(A) = lim By(A| Ty > +5)

for A € Fyand Tp = inf{t > 0: X; = 0}.
> (WARNING! Ultra specialist information): As X is a point recurrent process, there

exists an excursion measure #(-) for the Poisson random field of excursions from
the origin, from which one can construct (up to a constant)

Py (X; € dz) :=h(z)n(X; € dz, t < )
consistently with 7, y # 0, where ¢ is the excursion lifetime and
h(z) = (sin(rap) + sin(rap) — (sin(rap) — sin(rap))sgn(z)) |z]*~*
> (Executive summary of last point): The limit

P := lim P°
O =0 Y

is well defined in the sense of Skorohod convergence. /2



TIME CHANGE AND RIESZ-BOGDAN-ZAK

Remember there is a unique weak solution Z to the SDE
dzt:U(Zt,)dXh ZOZZER,tZO.

and Z can be expressed as time-change under P; via Z; := X,,, t < T, where

S
Tt :]IIf{S >0: / O'(Xs)_ads > t}
0
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TIME CHANGE AND RIESZ-BOGDAN-ZAK

Remember there is a unique weak solution Z to the SDE
dzt:U(Zt,)dXt, ZOZZER,tZOA

and Z can be expressed as time-change under P; via Z; := X,,, t < T, where

S
Tt :mf{s >0: / O'(XS)_adS > t}
0

Proposition (Déring & K. (2018))
Set

B(x) =o(1/x)"*|x|72,  xeR\{0}.

Define the time-space transformation

T 1 g0
VAR TR t< B(X3) du,
0, 0

where

Gt:inf{s>0:/sﬂ(5(,j’)du>t}.
0

If X° has law ]f”f o ¥ # 0, then Z Tis equal in law to the unique solution to the SDE
under Py up to killing at the origin. 15/ 23
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» We want to show that [, o(x) = |x|*~1dx < oo implies that +oo is an entrance
point for
dZtZO'(th)dXt, Z(]:ZER,tZO.

» Heuristically we want to have Z =4 X, enter at +00

> Which is to have 1/Z. (or indeed 1/Z ) enter at 0, crossing the origin infinitely
often for arbitrarily small times

» Which is to have )A(g. enter at 0, crossing the origin infinitely often for arbitrarily
small times

» Which will happen, since X° can enter at 0, providing we can control 6.

» Needs weak convergence of fot B(XS) du as \X8| — 0.
» Suffices to check

i ! ¥ : o oo 0
|JHIEOEX [/0 B(Xu)du] < |:1|HBOEX [/O B(Xu)du} < o0
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SUFFICIENCY (HEURISTIC)

Writing Gy, (x, dy) for the resolvent of X° and G+ (x, dy) for the resolvent of X killed
on first hitting the origin,

B UOOO /3(5(,‘;)du]
- /RGX" (x, dy)o(1/y) "%y~

h(y)
h(x)

- /R Gyt (6, dy) ) 5 (1 pyy=arpy 20

lyl>~!
|x|a71

~ /R (W1 s) = Iy = 215y — ) + 2 s(=x) ) Lo (1/y) "yl >,

which is finite if
/U(x)_o‘\x|”‘_1 dx < oo,
R

Note, for a Markov process Y, with probabilities Py, x € E,
oo
Gy (x, dy) = / pu(Yi €dy)dt,  xycE.
0
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HUNT-NAGASAWA DUALITY

Proposition (Doring & K. (2018))
Suppose that X° has probabilities I@’;, x € R. Define Zf = 5(?,, t > 0, where the
time-change ¢ is given by

S oo
1 = inf {S >0: / o(Xg)™%ds > t} , t< / o(Xg) ™ “ds.
0 0

Recall that Z has the law of the unique weak solution to the SDE and ZT is the same
process killed on first hitting 0.

If +00 is an entrance point for Z, then the time reversed process Z Zk* B’ t < k, under
P4 is a time-homogenous Markov process with transition semigroup which agrees
with that of Z°, where k is any almost surely finite last passage time for Z1 (e.g.

k =inf{t > 0: Z] =0}).
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1 = inf {S >0: / o(Xg)™%ds > t} , t< / o(Xg) ™ “ds.
0 0

Recall that Z has the law of the unique weak solution to the SDE and ZT is the same
process killed on first hitting 0.

If +00 is an entrance point for Z, then the time reversed process Z ,t <k, under

t
(k—t)—
P4 is a time-homogenous Markov process with transition semigroup which agrees
with that of Z°, where k is any almost surely finite last passage time for Z1 (e.g.

k =inf{t > 0: Z] =0}).
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time-change ¢ is given by
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1 = inf {S >0: / o(Xg)™%ds > t} , t< / o(Xg) ™ “ds.
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Recall that Z has the law of the unique weak solution to the SDE and ZT is the same
process killed on first hitting 0.

If +00 is an entrance point for Z, then the time reversed process Z ,t <k, under

t
(k—t)—
P4 is a time-homogenous Markov process with transition semigroup which agrees
with that of Z°, where k is any almost surely finite last passage time for Z1 (e.g.

k =inf{t > 0: Z] =0}).

Remark on proof: Important step is to prove weak duality:

Pzt (t,y,d2)u(dy) = pyo (t,z, dy)u(dz)
where

udy) = /]R U(dx)Go (x, dy) = o)~ *h(x)dx

and Gj, is the resolvent of ze 18/ 23
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process with transition semigroup which agrees with that of Z°, where k is any almost

The time reversed process Z t <k, under P4 is a time-homogenous Markov

surely finite last passage time for ZT (e.g. k = inf{t > 0 : ZZ =0})
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NECESSITY (HEURISTIC)

» We want to show that if o0 is an entrance point for
dzZ; = O'(Zt_) Xy, Zyp=z€cR,t >0,

then necessarily [, o(x)~%|x|*~!dx < oo.
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NECESSITY (HEURISTIC)

>

>

00 > Gyo (0,R) & Gyo (v, R) = / Gy (x,dy)
R

We want to show that if +-c0 is an entrance point for
dz; ZU(Zt_)dXt, Zyp=z€cR,t >0,

then necessarily [, o(x)~%|x|*~!dx < oo.

If +00 is an entrance point, then Z can be seen as a Feller process on the compact
space R.

Getoor’s equivalent definitions of transience:

> On the one hand, last exit from any compact set is a.s. finite
> On the other hand the resolvent of any compact set is finite

AsRis compact itself,
GZ(:EOO7 E) < oo

Hunt-Nagasawa duality implies that

GZ(:too,K) = GZO (O,R) < o0

A bit of work ....

h(y)
hi(x)

for any x € R.

o(1/y) =yl ~> z/RU(%)’D‘IX\‘X’ldx,
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DIFFICULTIES IN OTHER REGIMES

> Two sided jumps

> «a < 1 Cannot hit the origin, so cannot time reverse from the origin or condition to avoid
the origin

> o = 1Can time reverse from first entry into strip (—1, 1)

» « < 1Can do the same as o = 1 but cannot control the time change to explosion
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DIFFICULTIES IN OTHER REGIMES

> Two sided jumps

> o < 1 Cannot hit the origin, so cannot time reverse from the origin or condition to avoid
the origin

> o = 1Can time reverse from first entry into strip (—1, 1)

» « < 1Can do the same as o = 1 but cannot control the time change to explosion

> One sided jumps

> In the (negative) subordinator cases, don’t need to look at conditioned processes on time
reversal

> For the unbounded variation spectrally one-sided case, end up looking at conditioning
to stay positive or negative instead of conditioning to avoid the origin
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EXPLOSION (EXIT AT INFINITY)

Theorem (Doring & K. (2018))
Suppose that o > 0 and let

179 (A) = /A o (x) x| dx.

Then the following table exhaustively summarises finite time explosion for

A7) = o(Zi_ ) dX,

Zp=z€R,t>0.

[ Necessary and sufficient conditions for exit at infinite boundary points

| o | Jumps | +oo |7oo |:too
only | X Viff [7T°%(R_) < oo X
<1 only Viff 7Y (Ry) < oo X X
T &L X Viff 170 (R) < oo
[=1T71t&I X X X
only | X X X
>1 only X X X
T&1 | X X X
[=2 7] none | X X x
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Thank you!
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