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Entrance and exit at infinity
for stable jump diffusions

Andreas Kyprianou (based on joint work with Leif Döring)
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FELLER BOUNDARY CLASSIFICATION FOR DIFFUSIONS

I In his seminal work in the 1950s, William Feller classified one-dimensional
diffusion processes on −∞ ≤ a < b ≤ ∞

I The four types of boundary points are:
regular, if it is both accessible and enterable;
exit, if it is accessible but not enterable;
entrance, if it is enterable but not accessible;
natural if it is neither accessible nor enterable.

I Feller’s definitions and proofs are purely analytic, using Hille-Yosida theory to
generate Feller semigroup of a process (Xt, t ≥ 0) from differential operators
(diffusion generators)

A := κ(x)
d
dx

+
σ(x)2

2
d2

dx2

taking account of the different boundary conditions.
I A change of space via the so-called scale function (say s which makes

(s(Xt), t ≥ 0) a martingale)

dZt = σ̃(Zt) dBt, Z0 = z ∈ R,

on a new interval (ã, b̃).
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THE CASE OF AN INFINITE BOUNDARY

I In the setting of the entire real line, i.e. a = −∞ and b = +∞, the notion of
entrance (in applications also called coming down from infinity) and exit
(explosion) becomes interesting

I Depending on the growth of σ at infinity the infinite boundary points can be of an
entrance type. Feller’s results for this scenario imply that +∞ is an entrance
boundary if and only if ∫ +∞

xσ(x)−2 dx <∞,

i.e. σ growth slightly more than linearly at infinity.
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COMING DOWN FROM INFINITY: I

I The notion of coming down from infinity becoming more important in other
classes of Feller processes e.g. Kingman’s Coalescent

I The death chain counting number of blocks (genealogies) in Kingman’s
Coalescence is monotone and skip free (relatively easy to handle!)
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COMING DOWN FROM INFINITY: II
I Kingman coalescent dynamics, fragment each block at a constant rate into an

infinite number of blocks [cf. K., Pagett, Rogers & Schweinsberg (2017)] - what happens after
the first fragmentation event?

I Nothing more than a Markov chain (N(t) : t ≥ 0) on N ∪ {∞} specified by the
Q-matrix

Qi,j =

{
c
( i

2

)
if j = i− 1,

λi if j =∞.
Let θ := 2λ/c.

I If 0 < θ < 1, then (N(t) : t ≥ 0) is a recurrent Feller process on N ∪ {∞} such that
{∞} is instantaneously regular (that is to say 0 is a not a holding point).

I If θ ≥ 1, then {∞} is an absorbing state for (N(t) : t ≥ 0).

and (H) are violated by our model as they require that blocks split into a finite number of
of sub-blocks at a fragmentation event.

It turns out to be more convenient, however, to study the reciprocal process M := 1/N .
The case that there is a recurrent extension of M from 0 corresponds to the ability of the
fast fragmentation-coalescence process to come down from infinity. Moreover, if M = 0 is an
absorbing state then the fast fragmentation-coalescence process stays infinite. It transpires
that ✓ := 2�/c is the quantity that governs this behaviour. Our main result in this respect
is as follows.

Theorem 1 (Phase transition).

(i) If 0 < ✓ < 1, then M := (M(t) : t � 0) is a recurrent Feller process on {1/n : n 2
N} [ {0} such that 0 is instantaneously regular (that is to say 0 is a not a holding
point) and not sticky (that is to say

R1
0

1{M(s)=0}ds = 0 almost surely).

(ii) If ✓ � 1, then 0 is an absorbing state for M .

Figure 1: A computer simulation of the trajectories of N (blue) and M (black) restricted to
n = 106 integers, with c = 1 and � = 0.2. The inset shows detail of typical behaviour near
M = 0; the red line here illustrates the ‘speed’ predicted by Theorem 3.

Theorem 1 (i) also alludes to the existence of an excursion theory for the process M
away from 0 (equivalently N from {+1}). Indeed combined with the recurrence properties
of the point 0 given in Theorem 1 (i) standard theory dictates that a local time exists for
M at 0 such that its inverse is a pure jump subordinator with infinite activity. Moreover,
accompanying this local time is an excursion measure, Q. Following classical excursion
theory in Chapter XIX.46 of Dellacherie and Meyer [8], we can write down an invariant
measure for the transition semi-group of M in terms of this excursion measure. On account
of the fact that M is a bounded recurrent process in [0, 1], we would expect this invariant

3
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COMING DOWN FROM INFINITY: III

I Lambert’s logistic Continuous-state branching process

dZt = bZtdt + γZtdBt − cZ2
t dt, t ≥ 0.

Lambert (2005)

I More generally

Zt =x− a
∫ t

0
Zsds + σ

∫ t

0

∫ Zs−

0
W(ds,du)

+

∫ t

0

∫ Zs−

0

∫ ∞
0

rÑ(ds,dv,dr)−
∫ t

0
G(Zs)ds, t ≥ 0.

[Berestycki, Fitipaldi & Fontobona (2018)]
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STABLE JUMP-DIFFUSIONS

I Focus our study on so-called stable jump diffusions:

dZt = σ(Zt−) dXt, Z0 = z ∈ R, t ≥ 0.

I Intersted in entrance from {+∞}, {−∞} and ±∞ := {+∞} ∪ {−∞}
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STABLE PROCESS
I A stable process lies in the intersection of the class of Lévy process (stationary and

independent increments) and the class of self-similar Markov processes: for all
c > 0 and x ∈ R,

(cXc−αt, t ≥ 0) under Px is equal in law to (Xt, t ≥ 0) under Pcx,

where (Px, x ∈ R) are the probabilities of X and α ∈ (0, 2).
I Semigroup of X is entirely characterised by Ψ(z) := − logE0

[
eizX1

]
, satisfying

Ψ(z) = |z|α
(

eπiα( 1
2−ρ)1{z>0} + e−πiα( 1

2−ρ)1{z<0}

)
, z ∈ R.

where ρ = P(X1 > 0).
I The Lévy measure associated with Ψ:

Π(dx)

dx
= Γ(1 + α)

sin(παρ)

π

1
x1+α

1(x>0) + Γ(1 + α)
sin(παρ̂)

π

1
|x|1+α 1(x<0),

where ρ̂ := 1− ρ. In the case that α = 1, we take ρ = 1/2, meaning that X
corresponds to the Cauchy process.
Convention from now on: Anything with aˆ is associated to the law of −X. E.g.
P̂x is the law of −X with X0 = −x.

I If X has only upwards (resp. downwards) jumps we say X is spectrally positive
(resp. negative). If X has jumps in both directions we say X is two-sided. A
spectrally positive (resp. negative) stable process with α < 1 is necessarily
increasing (resp. decreasing).
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SDE

Proposition (Zanzotto (2002), Döring & K. (2018))
Suppose that σ is strictly positive. Then there is a unique (possibly exploding) weak
solution Z to the SDE

dZt = σ(Zt−) dXt, Z0 = z ∈ R, t ≥ 0.

and Z can be expressed as time-change under Pz via

Zt := Xτt , t < T,

where

τt = inf
{

s > 0 :

∫ s

0
σ(Xs)

−αds > t
}

and the finite or infinite explosion time is T =
∫∞

0 σ(Xs)−αds.

The law of the unique solution Z will be denoted by Pz, z ∈ R.

Technical point: when α ∈ (1, 2), the origin is a recurrent point, hence as σ > 0,
T =∞.

However, when α ∈ (1, 2), k := inf{t > 0 : Zt = 0} is almost surely finite (irrespective
of Z0).
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Zt := Xτt , t < T,

where

τt = inf
{

s > 0 :

∫ s

0
σ(Xs)

−αds > t
}

and the finite or infinite explosion time is T =
∫∞

0 σ(Xs)−αds.

The law of the unique solution Z will be denoted by Pz, z ∈ R.

Technical point: when α ∈ (1, 2), the origin is a recurrent point, hence as σ > 0,
T =∞.

However, when α ∈ (1, 2), k := inf{t > 0 : Zt = 0} is almost surely finite (irrespective
of Z0).
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ENTRANCE AT INFINITY

Definition
We say that ±∞ is a (continuous) entrance point for a Feller process Y on R with
transition semigroup P (with probabilities Px, x ∈ R) if

(i) the point ±∞ is not accessible,

(ii) the semigroup P can be extended to a Feller semigroup P on Cb(R),

(iii) there is continuous entrance in the sense that

P±∞

(
lim
t↓0
|Yt| =∞, lim sup

t↓0
Yt = +∞, lim inf

t↓0
Yt = −∞

)
= 1

Analogously, we define entrance from −∞ as extension to Cb(R) and entrance from
+∞ as extension to Cb(R) = C(R).
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ENTRANCE AT INFINITY

Theorem (Döring & K. (2018))
Suppose that σ is uniformly bounded away from the origin and let

Iσ,α(A) =

∫
A
σ(x)−α|x|α−1 dx and Iσ,1 =

∫
R
σ(x)−1 log |x|dx.

Then the following table exhaustively summarizes entrance points at infinity of

dZt = σ(Zt−) dXt, Z0 = z ∈ R, t ≥ 0.

Necessary and sufficient conditions for entrance from infinite boundary points
α Jumps +∞ −∞ ±∞

only ↓ 7 7 7
< 1 only ↑ 7 7 7

↑ & ↓ 7 7 7

= 1 ↑ & ↓ 7 7 3 iff Iσ,1 < ∞

only ↓ 7 3 iff Iσ,α(R−) < ∞ 7

> 1 only ↑ 3 iff Iσ,α(R+) < ∞ 7 7

↑ & ↓ 7 7 3 iff Iσ,α(R) < ∞

= 2 none 3 iff Iσ,2(R+) < ∞ 3 iff Iσ,2(R−) < ∞ 7
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↑ & ↓ 7 7 3 iff Iσ,α(R) < ∞

= 2 none 3 iff Iσ,2(R+) < ∞ 3 iff Iσ,2(R−) < ∞ 7

Henceforth concentrate on the case of two-sided jumps.
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RIESZ–BOGDAN–ŻAK TRANSFORM

Convention from now on: Anything with aˆ is associated to the law of −X. E.g. P̂x is
the law of −X with X0 = −x.

Theorem (Bogdan & Żak (2010), K. (2016))
Suppose that X is a stable process with two-sided jumps. Define

η(t) = inf{s > 0 :

∫ s

0
|Xu|−2αdu > t}, t ≥ 0.

Then, for all x ∈ R\{0},
1

Xη(t)
, t ≥ 0

under P̂x a self-similar Markov process equal in law to (X,P◦1/x), where

dP◦x
dPx

∣∣∣∣
Ft

=
h(Xt)

h(x)
1(t<τ{0})

h(z) = (sin(παρ) + sin(παρ̂)− (sin(παρ)− sin(παρ̂))sgn(z)) |z|α−1

and Ft := σ(Xs : s ≤ t), t ≥ 0.
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STABLE CONDITIONED TO AVOID THE ORIGIN
I Recalling that α ∈ (1, 2), |x|α−1 as a Doob h-function, rewards paths that are far

from the origin (|x| � 1) and punishes paths that stray too close to the origin
(|x| � 1).

I In fact it has been shown [Chaumont, Panti & Rivero (2013), Kuznetsov, K., Pardo, Watson (2014)]

that (X,P◦y ), y 6= 0, can be identified by the limit

P◦y (A) = lim
s→∞

Py(A |T0 > t + s),

for A ∈ Ft and T0 = inf{t > 0 : Xt = 0}.
I (WARNING! Ultra specialist information): As X is a point recurrent process, there

exists an excursion measure n(·) for the Poisson random field of excursions from
the origin, from which one can construct (up to a constant)

P◦0 (X◦t ∈ dz) := h(z)n(Xt ∈ dz, t < ζ)

consistently with P◦y , y 6= 0, where ζ is the excursion lifetime and

h(z) = (sin(παρ) + sin(παρ̂)− (sin(παρ)− sin(παρ̂))sgn(z)) |z|α−1

I (Executive summary of last point): The limit

P◦0 := lim
|y|→0

P◦y

is well defined in the sense of Skorohod convergence.
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TIME CHANGE AND RIESZ-BOGDAN-ŻAK
Remember there is a unique weak solution Z to the SDE

dZt = σ(Zt−) dXt, Z0 = z ∈ R, t ≥ 0.

and Z can be expressed as time-change under Pz via Zt := Xτt , t < T, where

τt = inf
{

s > 0 :

∫ s

0
σ(Xs)

−αds > t
}

Proposition (Döring & K. (2018))
Set

β(x) = σ(1/x)−α|x|−2α, x ∈ R\{0}.
Define the time-space transformation

Z†t =
1

X̂◦θt

, t <
∫ ∞

0
β(X̂◦u ) du,

where

θt = inf
{

s > 0 :

∫ s

0
β(X̂◦u ) du > t

}
.

If X̂◦ has law P̂◦1/x, x 6= 0, then Z† is equal in law to the unique solution to the SDE
under Px up to killing at the origin.
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SUFFICIENCY (HEURISTIC)

I We want to show that
∫
R σ(x)−α|x|α−1 dx <∞ implies that ±∞ is an entrance

point for
dZt = σ(Zt−) dXt, Z0 = z ∈ R, t ≥ 0.

I Heuristically we want to have Z =d Xτ· enter at ±∞
I Which is to have 1/Z· (or indeed 1/Z†· ) enter at 0, crossing the origin infinitely

often for arbitrarily small times

I Which is to have X̂◦θ· enter at 0, crossing the origin infinitely often for arbitrarily
small times

I Which will happen, since X̂◦ can enter at 0, providing we can control θ·
I Needs weak convergence of

∫ t
0 β(X̂◦u ) du as |X̂◦0 | → 0.

I Suffices to check

lim
|x|→0

Ê◦x
[∫ t

0
β(X̂◦u )du

]
< lim
|x|→0

Ê◦x
[∫ ∞

0
β(X̂◦u )du

]
<∞
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SUFFICIENCY (HEURISTIC)

Writing GX̂◦ (x,dy) for the resolvent of X̂◦ and GX̂† (x,dy) for the resolvent of X killed
on first hitting the origin,

Ê◦x
[∫ ∞

0
β(X̂◦u )du

]
=

∫
R

GX̂◦ (x,dy)σ(1/y)−α|y|−2α

=

∫
R

GX̂† (x,dy)
ĥ(y)

ĥ(x)
σ(1/y)−α|y|−2α

≈
∫
R

(
|y|α−1s(y)− |y− x|α−1s(y− x) + |x|α−1s(−x)

) |y|α−1

|x|α−1
σ(1/y)−α|y|−2α,

which is finite if ∫
R
σ(x)−α|x|α−1 dx <∞.

Note, for a Markov process Y, with probabilities Px, x ∈ E,

GY(x,dy) =

∫ ∞
0

Px(Yt ∈ dy)dt, x, y ∈ E.
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HUNT-NAGASAWA DUALITY

Proposition (Döring & K. (2018))
Suppose that X̂◦ has probabilities P̂◦x , x ∈ R. Define Ẑ◦t = X̂◦ιt

, t ≥ 0, where the
time-change ι is given by

ιt = inf
{

s > 0 :

∫ s

0
σ(X̂◦s )−αds > t

}
, t <

∫ ∞
0

σ(X̂◦s )−αds.

Recall that Z has the law of the unique weak solution to the SDE and Z† is the same
process killed on first hitting 0.
If ±∞ is an entrance point for Z, then the time reversed process Z†

(k−t)−, t ≤ k, under
P±∞ is a time-homogenous Markov process with transition semigroup which agrees
with that of Ẑ◦, where k is any almost surely finite last passage time for Z† (e.g.
k = inf{t > 0 : Z†t = 0}).

Remark on proof: Important step is to prove weak duality:

pZ† (t, y,dz)µ(dy) = pẐ◦ (t, z,dy)µ(dz)

where
µ(dy) =

∫
R
ν(dx)GẐ◦ (x,dy) = σ(x)−αh(x)dx

and GẐ◦ is the resolvent of Ẑ◦
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18/ 23

HUNT-NAGASAWA DUALITY

Proposition (Döring & K. (2018))
Suppose that X̂◦ has probabilities P̂◦x , x ∈ R. Define Ẑ◦t = X̂◦ιt
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HUNT-NAGASAWA DUALITY

The time reversed process Z†
(k−t)−, t ≤ k, under P±∞ is a time-homogenous Markov

process with transition semigroup which agrees with that of Ẑ◦, where k is any almost
surely finite last passage time for Z† (e.g. k = inf{t > 0 : Z†t = 0})
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NECESSITY (HEURISTIC)
I We want to show that if ±∞ is an entrance point for

dZt = σ(Zt−) dXt, Z0 = z ∈ R, t ≥ 0,

then necessarily
∫
R σ(x)−α|x|α−1 dx <∞.

I If ±∞ is an entrance point, then Z can be seen as a Feller process on the compact
space R.

I Getoor’s equivalent definitions of transience:
I On the one hand, last exit from any compact set is a.s. finite
I On the other hand the resolvent of any compact set is finite

I As R is compact itself,
GZ(±∞,R) <∞

I Hunt-Nagasawa duality implies that

GZ(±∞,R) = GẐ◦ (0,R) <∞

I A bit of work ....

∞ > GẐ◦ (0,R) ≈ GẐ◦ (x,R) =

∫
R

GX̂† (x,dy)
ĥ(y)

ĥ(x)
σ(1/y)−α|y|−2α ≈

∫
R
σ(x)−α|x|α−1 dx,

for any x ∈ R.
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I A bit of work ....
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DIFFICULTIES IN OTHER REGIMES

I Two sided jumps
I α ≤ 1 Cannot hit the origin, so cannot time reverse from the origin or condition to avoid

the origin
I α = 1 Can time reverse from first entry into strip (−1, 1)
I α < 1 Can do the same as α = 1 but cannot control the time change to explosion

I One sided jumps
I In the (negative) subordinator cases, don’t need to look at conditioned processes on time

reversal
I For the unbounded variation spectrally one-sided case, end up looking at conditioning

to stay positive or negative instead of conditioning to avoid the origin
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EXPLOSION (EXIT AT INFINITY)

Theorem (Döring & K. (2018))
Suppose that σ > 0 and let

Iσ,α(A) =

∫
A
σ(x)−α|x|α−1dx.

Then the following table exhaustively summarises finite time explosion for

dZt = σ(Zt−) dXt, Z0 = z ∈ R, t ≥ 0.

Necessary and sufficient conditions for exit at infinite boundary points
α Jumps +∞ −∞ ±∞

only ↓ 7 3 iff Iσ,α(R−) < ∞ 7

< 1 only ↑ 3 iff Iσ,α(R+) < ∞ 7 7

↑ & ↓ 7 7 3 iff Iσ,α(R) < ∞

= 1 ↑ & ↓ 7 7 7

only ↓ 7 7 7
> 1 only ↑ 7 7 7

↑ & ↓ 7 7 7

= 2 none 7 7 7
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Thank you!


